Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Clin Drug Investig ; 43(4): 307-314, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2302059

ABSTRACT

BACKGROUND AND OBJECTIVE: Resistance to antibacterial substances is a huge and still emerging issue, especially with regard to Gram-negative bacteria and in critically ill patients. We report a study in six patients infected with extensively drug-resistant Gram-negative bacteria in a limited outbreak who were successfully managed with a quasi-continuous infusion of cefiderocol. METHODS: Patients were initially treated with prolonged infusions of cefiderocol over 3 h every 8 h, and the application mode was then switched to a quasi-continuous infusion of 2 g over 8 h, i.e. 6 g in 24 h. Therapeutic drug monitoring (TDM) was established using an in-house liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. RESULTS: Determined trough plasma concentrations were a median of 50.00 mg/L [95% confidence interval (CI) 27.20, 74.60] and steady-state plasma concentrations were a median of 90.96 mg/L [95% CI 37.80, 124]. No significant differences were detected with respect to acute kidney injury/continuous renal replacement therapy. Plasma concentrations determined from different modes of storage were almost equal when frozen or cooled, but markedly reduced when stored at room temperature. CONCLUSIONS: (Quasi) continuous application of cefiderocol 6 g/24 h in conjunction with TDM is a feasible mode of application; the sample for TDM should either be immediately analyzed, cooled, or frozen prior to analysis.


Subject(s)
Drug Monitoring , Tandem Mass Spectrometry , Humans , Chromatography, Liquid , Feasibility Studies , Anti-Bacterial Agents/therapeutic use , Gram-Negative Bacteria
2.
Minerva Anestesiol ; 89(6): 577-585, 2023 06.
Article in English | MEDLINE | ID: covidwho-2285384

ABSTRACT

COVID-19 pandemic has seen an unprecedented number of patients presenting with acute respiratory distress syndrome to the intensive care units all over the world. Between August and November 2022, we performed research on PubMed screening all publications on COVID-19 disease and respiratory failure and its treatment. In this review we focused on COVID-19 most common manifestations concerning lung function. The respiratory infection develops in three broad phases: early, intermediate, and late. The mainstay of the disease is the frequent presence of severe hypoxemia associated - at least at the beginning - to a near normal lung mechanics and PaCO2 tension. The management of symptomatic patients, progressing through these temporal phases, is not possible without understanding the pathophysiology underlying the respiratory manifestation.


Subject(s)
COVID-19 , Respiration Disorders , Respiratory Distress Syndrome , Humans , SARS-CoV-2 , Pandemics , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy
3.
Scand J Trauma Resusc Emerg Med ; 29(1): 155, 2021 Oct 30.
Article in English | MEDLINE | ID: covidwho-2098402

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a highly contagious airborne virus inducing pandemic coronavirus disease 2019 (COVID-19). This is most relevant for medical staff working under harmful conditions in emergencies often dealing with patients and an undefined SARS-CoV-2 status. We aimed to measure the effect of high-class filtering facepieces (FFP) in emergency medical service (EMS) staff by analyzing seroprevalence and history of positive polymerase chain reaction (PCR) for SARS-CoV-2. METHOD: This observational cohort study included workers in EMS, who were compared with hospital staff (HS) and staff, which was not directly involved in patient care (NPC). All direct patient contacts of EMS workers were protected by FFP2/N95 (filtering face piece protection class 2/non-oil-based particulates filter efficiency 95%) masks, whereas HS was protected by FFP2/N95 exclusively when a patient had a proven or suspected SARS-CoV-2 infection. NPC was not protected by higher FFP. The seroprevalence of SARS-CoV-2 antibodies was analyzed by immunoassay by end of 12/2020 together with the history of a positive PCR. In addition, a self-assessment was performed regarding the quantity of SARS-CoV-2 positive contacts, about flu symptoms and personal belief of previous COVID-19 infections. RESULTS: The period in which contact to SARS-CoV-2 positive patients has been possible was 10 months (March to December 2020)-with 54,681 patient contacts documented for EMS-either emergencies (n = 33,241) or transportation services (n = 21,440). Seven hundred-thirty (n = 730) participants were included into the study (n = EMS: 325, HS: 322 and NPC: 83). The analysis of the survey showed that the exposure to patients with an unknown and consecutive positive SARS-CoV-2 result was significantly higher for EMS when compared to HS (EMS 55% vs. HS 30%, p = 0.01). The incidence of a SARS-CoV-2 infection in our cohort was 1.2% (EMS), 2.2% (HS) and 2.4% (NPC) within the three groups (ns) and lowest in EMS. Furthermore, the belief of previous COVID-19 was significant higher in EMS (19% vs. 10%), CONCLUSION: The consistent use of FFP2/N95 in EMS is able to prevent work-related SARS-CoV-2 infections in emergency situations. The significance of physical airway protection in exposed medical staff is still relevant especially under the aspect of new viral variants and unclear effectiveness of new vaccines.


Subject(s)
COVID-19 , Emergencies , Cohort Studies , Health Personnel , Humans , SARS-CoV-2 , Seroepidemiologic Studies
4.
Am J Respir Crit Care Med ; 206(8): 973-980, 2022 10 15.
Article in English | MEDLINE | ID: covidwho-1857982

ABSTRACT

Rationale: Weaning from venovenous extracorporeal membrane oxygenation (VV-ECMO) is based on oxygenation and not on carbon dioxide elimination. Objectives: To predict readiness to wean from VV-ECMO. Methods: In this multicenter study of mechanically ventilated adults with severe acute respiratory distress syndrome receiving VV-ECMO, we investigated a variable based on CO2 elimination. The study included a prospective interventional study of a physiological cohort (n = 26) and a retrospective clinical cohort (n = 638). Measurements and Main Results: Weaning failure in the clinical and physiological cohorts were 37% and 42%, respectively. The main cause of failure in the physiological cohort was high inspiratory effort or respiratory rate. All patients exhaled similar amounts of CO2, but in patients who failed the weaning trial, [Formula: see text]e was higher to maintain the PaCO2 unchanged. The effort to eliminate one unit-volume of CO2, was double in patients who failed (68.9 [42.4-123] vs. 39 [20.1-57] cm H2O/[L/min]; P = 0.007), owing to the higher physiological Vd (68 [58.73] % vs. 54 [41.64] %; P = 0.012). End-tidal partial carbon dioxide pressure (PetCO2)/PaCO2 ratio was a clinical variable strongly associated with weaning outcome at baseline, with area under the receiver operating characteristic curve of 0.87 (95% confidence interval [CI], 0.71-1). Similarly, the PetCO2/PaCO2 ratio was associated with weaning outcome in the clinical cohort both before the weaning trial (odds ratio, 4.14; 95% CI, 1.32-12.2; P = 0.015) and at a sweep gas flow of zero (odds ratio, 13.1; 95% CI, 4-44.4; P < 0.001). Conclusions: The primary reason for weaning failure from VV-ECMO is high effort to eliminate CO2. A higher PetCO2/PaCO2 ratio was associated with greater likelihood of weaning from VV-ECMO.


Subject(s)
Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Adult , Carbon Dioxide , Humans , Prospective Studies , Respiratory Distress Syndrome/therapy , Retrospective Studies
5.
Front Immunol ; 12: 784989, 2021.
Article in English | MEDLINE | ID: covidwho-1603282

ABSTRACT

Effective treatment strategies for severe coronavirus disease (COVID-19) remain scarce. Hydrolysis of membrane-embedded, inert sphingomyelin by stress responsive sphingomyelinases is a hallmark of adaptive responses and cellular repair. As demonstrated in experimental and observational clinical studies, the transient and stress-triggered release of a sphingomyelinase, SMPD1, into circulation and subsequent ceramide generation provides a promising target for FDA-approved drugs. Here, we report the activation of sphingomyelinase-ceramide pathway in 23 intensive care patients with severe COVID-19. We observed an increase of circulating activity of sphingomyelinase with subsequent derangement of sphingolipids in serum lipoproteins and from red blood cells (RBC). Consistent with increased ceramide levels derived from the inert membrane constituent sphingomyelin, increased activity of acid sphingomyelinase (ASM) accurately distinguished the patient cohort undergoing intensive care from healthy controls. Positive correlational analyses with biomarkers of severe clinical phenotype support the concept of an essential pathophysiological role of ASM in the course of SARS-CoV-2 infection as well as of a promising role for functional inhibition with anti-inflammatory agents in SARS-CoV-2 infection as also proposed in independent observational studies. We conclude that large-sized multicenter, interventional trials are now needed to evaluate the potential benefit of functional inhibition of this sphingomyelinase in critically ill patients with COVID-19.


Subject(s)
COVID-19/metabolism , Ceramides/metabolism , Signal Transduction , Sphingomyelin Phosphodiesterase/metabolism , Anti-Inflammatory Agents/therapeutic use , COVID-19/virology , Ceramides/blood , Enzyme Activation , Erythrocyte Membrane/metabolism , Erythrocytes/metabolism , Fatty Acids/metabolism , Humans , Intensive Care Units , Patient Acuity , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sphingomyelin Phosphodiesterase/blood , Sphingomyelins/metabolism , COVID-19 Drug Treatment
6.
Clin Sci (Lond) ; 135(24): 2781-2791, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1599254

ABSTRACT

Low plasma levels of the signaling lipid metabolite sphingosine 1-phosphate (S1P) are associated with disrupted endothelial cell (EC) barriers, lymphopenia and reduced responsivity to hypoxia. Total S1P levels were also reduced in 23 critically ill patients with coronavirus disease 2019 (COVID-19), and the two main S1P carriers, serum albumin (SA) and high-density lipoprotein (HDL) were dramatically low. Surprisingly, we observed a carrier-changing shift from SA to HDL, which probably prevented an even further drop in S1P levels. Furthermore, intracellular S1P levels in red blood cells (RBCs) were significantly increased in COVID-19 patients compared with healthy controls due to up-regulation of S1P producing sphingosine kinase 1 and down-regulation of S1P degrading lyase expression. Cell culture experiments supported increased sphingosine kinase activity and unchanged S1P release from RBC stores of COVID-19 patients. These observations suggest adaptive mechanisms for maintenance of the vasculature and immunity as well as prevention of tissue hypoxia in COVID-19 patients.


Subject(s)
COVID-19/blood , COVID-19/physiopathology , Erythrocytes/metabolism , Lysophospholipids/blood , Sphingosine/analogs & derivatives , Aged , Cells, Cultured , Humans , Lipoproteins, HDL/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , SARS-CoV-2 , Serum Albumin/metabolism , Sphingosine/blood
7.
Intensive Care Med ; 48(1): 56-66, 2022 01.
Article in English | MEDLINE | ID: covidwho-1536292

ABSTRACT

PURPOSE: This study aimed at investigating the mechanisms underlying the oxygenation response to proning and recruitment maneuvers in coronavirus disease 2019 (COVID-19) pneumonia. METHODS: Twenty-five patients with COVID-19 pneumonia, at variable times since admission (from 1 to 3 weeks), underwent computed tomography (CT) lung scans, gas-exchange and lung-mechanics measurement in supine and prone positions at 5 cmH2O and during recruiting maneuver (supine, 35 cmH2O). Within the non-aerated tissue, we differentiated the atelectatic and consolidated tissue (recruitable and non-recruitable at 35 cmH2O of airway pressure). Positive/negative response to proning/recruitment was defined as increase/decrease of PaO2/FiO2. Apparent perfusion ratio was computed as venous admixture/non aerated tissue fraction. RESULTS: The average values of venous admixture and PaO2/FiO2 ratio were similar in supine-5 and prone-5. However, the PaO2/FiO2 changes (increasing in 65% of the patients and decreasing in 35%, from supine to prone) correlated with the balance between resolution of dorsal atelectasis and formation of ventral atelectasis (p = 0.002). Dorsal consolidated tissue determined this balance, being inversely related with dorsal recruitment (p = 0.012). From supine-5 to supine-35, the apparent perfusion ratio increased from 1.38 ± 0.71 to 2.15 ± 1.15 (p = 0.004) while PaO2/FiO2 ratio increased in 52% and decreased in 48% of patients. Non-responders had consolidated tissue fraction of 0.27 ± 0.1 vs. 0.18 ± 0.1 in the responding cohort (p = 0.04). Consolidated tissue, PaCO2 and respiratory system elastance were higher in patients assessed late (all p < 0.05), suggesting, all together, "fibrotic-like" changes of the lung over time. CONCLUSION: The amount of consolidated tissue was higher in patients assessed during the third week and determined the oxygenation responses following pronation and recruitment maneuvers.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Lung/diagnostic imaging , Prone Position , Prospective Studies , Pulmonary Gas Exchange , SARS-CoV-2
8.
Eur Respir Rev ; 30(162)2021 Dec 31.
Article in English | MEDLINE | ID: covidwho-1477254

ABSTRACT

Coronavirus disease 2019 (COVID-19) pneumonia is an evolving disease. We will focus on the development of its pathophysiologic characteristics over time, and how these time-related changes determine modifications in treatment. In the emergency department: the peculiar characteristic is the coexistence, in a significant fraction of patients, of severe hypoxaemia, near-normal lung computed tomography imaging, lung gas volume and respiratory mechanics. Despite high respiratory drive, dyspnoea and respiratory rate are often normal. The underlying mechanism is primarily altered lung perfusion. The anatomical prerequisites for PEEP (positive end-expiratory pressure) to work (lung oedema, atelectasis, and therefore recruitability) are lacking. In the high-dependency unit: the disease starts to worsen either because of its natural evolution or additional patient self-inflicted lung injury (P-SILI). Oedema and atelectasis may develop, increasing recruitability. Noninvasive supports are indicated if they result in a reversal of hypoxaemia and a decreased inspiratory effort. Otherwise, mechanical ventilation should be considered to avert P-SILI. In the intensive care unit: the primary characteristic of the advance of unresolved COVID-19 disease is a progressive shift from oedema or atelectasis to less reversible structural lung alterations to lung fibrosis. These later characteristics are associated with notable impairment of respiratory mechanics, increased arterial carbon dioxide tension (P aCO2 ), decreased recruitability and lack of response to PEEP and prone positioning.


Subject(s)
COVID-19/physiopathology , COVID-19/therapy , Lung/physiopathology , Positive-Pressure Respiration/methods , Respiration, Artificial/methods , Humans , Pulmonary Atelectasis/prevention & control , Respiratory Mechanics , SARS-CoV-2
9.
Front Physiol ; 12: 676118, 2021.
Article in English | MEDLINE | ID: covidwho-1448801

ABSTRACT

Knowledge of gas volume, tissue mass and recruitability measured by the quantitative CT scan analysis (CT-qa) is important when setting the mechanical ventilation in acute respiratory distress syndrome (ARDS). Yet, the manual segmentation of the lung requires a considerable workload. Our goal was to provide an automatic, clinically applicable and reliable lung segmentation procedure. Therefore, a convolutional neural network (CNN) was used to train an artificial intelligence (AI) algorithm on 15 healthy subjects (1,302 slices), 100 ARDS patients (12,279 slices), and 20 COVID-19 (1,817 slices). Eighty percent of this populations was used for training, 20% for testing. The AI and manual segmentation at slice level were compared by intersection over union (IoU). The CT-qa variables were compared by regression and Bland Altman analysis. The AI-segmentation of a single patient required 5-10 s vs. 1-2 h of the manual. At slice level, the algorithm showed on the test set an IOU across all CT slices of 91.3 ± 10.0, 85.2 ± 13.9, and 84.7 ± 14.0%, and across all lung volumes of 96.3 ± 0.6, 88.9 ± 3.1, and 86.3 ± 6.5% for normal lungs, ARDS and COVID-19, respectively, with a U-shape in the performance: better in the lung middle region, worse at the apex and base. At patient level, on the test set, the total lung volume measured by AI and manual segmentation had a R 2 of 0.99 and a bias -9.8 ml [CI: +56.0/-75.7 ml]. The recruitability measured with manual and AI-segmentation, as change in non-aerated tissue fraction had a bias of +0.3% [CI: +6.2/-5.5%] and -0.5% [CI: +2.3/-3.3%] expressed as change in well-aerated tissue fraction. The AI-powered lung segmentation provided fast and clinically reliable results. It is able to segment the lungs of seriously ill ARDS patients fully automatically.

10.
Intensive Care Med ; 47(10): 1130-1139, 2021 10.
Article in English | MEDLINE | ID: covidwho-1412084

ABSTRACT

PURPOSE: We investigated if the stress applied to the lung during non-invasive respiratory support may contribute to the coronavirus disease 2019 (COVID-19) progression. METHODS: Single-center, prospective, cohort study of 140 consecutive COVID-19 pneumonia patients treated in high-dependency unit with continuous positive airway pressure (n = 131) or non-invasive ventilation (n = 9). We measured quantitative lung computed tomography, esophageal pressure swings and total lung stress. RESULTS: Patients were divided in five subgroups based on their baseline PaO2/FiO2 (day 1): non-CARDS (median PaO2/FiO2 361 mmHg, IQR [323-379]), mild (224 mmHg [211-249]), mild-moderate (173 mmHg [164-185]), moderate-severe (126 mmHg [114-138]) and severe (88 mmHg [86-99], p < 0.001). Each subgroup had similar median lung weight: 1215 g [1083-1294], 1153 [888-1321], 968 [858-1253], 1060 [869-1269], and 1127 [937-1193] (p = 0.37). They also had similar non-aerated tissue fraction: 10.4% [5.9-13.7], 9.6 [7.1-15.8], 9.4 [5.8-16.7], 8.4 [6.7-12.3] and 9.4 [5.9-13.8], respectively (p = 0.85). Treatment failure of CPAP/NIV occurred in 34 patients (24.3%). Only three variables, at day one, distinguished patients with negative outcome: PaO2/FiO2 ratio (OR 0.99 [0.98-0.99], p = 0.02), esophageal pressure swing (OR 1.13 [1.01-1.27], p = 0.032) and total stress (OR 1.17 [1.06-1.31], p = 0.004). When these three variables were evaluated together in a multivariate logistic regression analysis, only the total stress was independently associated with negative outcome (OR 1.16 [1.01-1.33], p = 0.032). CONCLUSIONS: In early COVID-19 pneumonia, hypoxemia is not linked to computed tomography (CT) pathoanatomy, differently from typical ARDS. High lung stress was independently associated with the failure of non-invasive respiratory support.


Subject(s)
COVID-19 , Cohort Studies , Humans , Lung/diagnostic imaging , Prospective Studies , SARS-CoV-2
11.
Front Physiol ; 11: 588248, 2020.
Article in English | MEDLINE | ID: covidwho-1069746

ABSTRACT

Acute respiratory distress syndrome (ARDS) represents an acute diffuse inflammation of the lungs triggered by different causes, uniformly leading to a noncardiogenic pulmonary edema with inhomogeneous densities in lung X-ray and lung CT scan and acute hypoxemia. Edema formation results in "heavy" lungs, inducing loss of compliance and the need to spend more energy to "move" the lungs. Consequently, an ARDS patient, as long as the patient is breathing spontaneously, has an increased respiratory drive to ensure adequate oxygenation and CO2 removal. One would expect that, once the blood gases get back to "physiological" values, the respiratory drive would normalize and the breathing effort return to its initial status. However, in many ARDS patients, this is not the case; their respiratory drive appears to be upregulated and fully or at least partially detached from the blood gas status. Strikingly, similar alteration of the respiratory drive can be seen in patients suffering from SARS, especially SARS-Covid-19. We hypothesize that alterations of the renin-angiotensin-system (RAS) related to the pathophysiology of ARDS and SARS are involved in this dysregulation of chemosensitive control of breathing.

12.
J Appl Physiol (1985) ; 130(3): 865-876, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1028125

ABSTRACT

COVID-19 infection may lead to acute respiratory distress syndrome (CARDS) where severe gas exchange derangements may be associated, at least in the early stages, only with minor pulmonary infiltrates. This may suggest that the shunt associated to the gasless lung parenchyma is not sufficient to explain CARDS hypoxemia. We designed an algorithm (VentriQlar), based on the same conceptual grounds described by J.B. West in 1969. We set 498 ventilation-perfusion (VA/Q) compartments and, after calculating their blood composition (PO2, PCO2, and pH), we randomly chose 106 combinations of five parameters controlling a bimodal distribution of blood flow. The solutions were accepted if the predicted PaO2 and PaCO2 were within 10% of the patient's values. We assumed that the shunt fraction equaled the fraction of non-aerated lung tissue at the CT quantitative analysis. Five critically-ill patients later deceased were studied. The PaO2/FiO2 was 91.1 ± 18.6 mmHg and PaCO2 69.0 ± 16.1 mmHg. Cardiac output was 9.58 ± 0.99 L/min. The fraction of non-aerated tissue was 0.33 ± 0.06. The model showed that a large fraction of the blood flow was likely distributed in regions with very low VA/Q (Qmean = 0.06 ± 0.02) and a smaller fraction in regions with moderately high VA/Q. Overall LogSD, Q was 1.66 ± 0.14, suggestive of high VA/Q inequality. Our data suggest that shunt alone cannot completely account for the observed hypoxemia and a significant VA/Q inequality must be present in COVID-19. The high cardiac output and the extensive microthrombosis later found in the autopsy further support the hypothesis of a pathological perfusion of non/poorly ventilated lung tissue.NEW & NOTEWORTHY Hypothesizing that the non-aerated lung fraction as evaluated by the quantitative analysis of the lung computed tomography (CT) equals shunt (VA/Q = 0), we used a computational approach to estimate the magnitude of the ventilation-perfusion inequality in severe COVID-19. The results show that a severe hyperperfusion of poorly ventilated lung region is likely the cause of the observed hypoxemia. The extensive microthrombosis or abnormal vasodilation of the pulmonary circulation may represent the pathophysiological mechanism of such VA/Q distribution.


Subject(s)
COVID-19/physiopathology , Ventilation-Perfusion Ratio/physiology , Adult , Aged , COVID-19/metabolism , Cardiac Output/physiology , Female , Hemodynamics/physiology , Humans , Lung/metabolism , Lung/physiopathology , Male , Middle Aged , Oxygen/metabolism , Perfusion/methods , Pulmonary Circulation/physiology , Pulmonary Gas Exchange/physiology , Respiration , Retrospective Studies , SARS-CoV-2/pathogenicity
13.
Intensive Care Med ; 46(12): 2187-2196, 2020 12.
Article in English | MEDLINE | ID: covidwho-886981

ABSTRACT

PURPOSE: To investigate whether COVID-19-ARDS differs from all-cause ARDS. METHODS: Thirty-two consecutive, mechanically ventilated COVID-19-ARDS patients were compared to two historical ARDS sub-populations 1:1 matched for PaO2/FiO2 or for compliance of the respiratory system. Gas exchange, hemodynamics and respiratory mechanics were recorded at 5 and 15 cmH2O PEEP. CT scan variables were measured at 5 cmH2O PEEP. RESULTS: Anthropometric characteristics were similar in COVID-19-ARDS, PaO2/FiO2-matched-ARDS and Compliance-matched-ARDS. The PaO2/FiO2-matched-ARDS and COVID-19-ARDS populations (both with PaO2/FiO2 106 ± 59 mmHg) had different respiratory system compliances (Crs) (39 ± 11 vs 49.9 ± 15.4 ml/cmH2O, p = 0.03). The Compliance-matched-ARDS and COVID-19-ARDS had similar Crs (50.1 ± 15.7 and 49.9 ± 15.4 ml/cmH2O, respectively) but significantly lower PaO2/FiO2 for the same Crs (160 ± 62 vs 106.5 ± 59.6 mmHg, p < 0.001). The three populations had similar lung weights but COVID-19-ARDS had significantly higher lung gas volume (PaO2/FiO2-matched-ARDS 930 ± 644 ml, COVID-19-ARDS 1670 ± 791 ml and Compliance-matched-ARDS 1301 ± 627 ml, p < 0.05). The venous admixture was significantly related to the non-aerated tissue in PaO2/FiO2-matched-ARDS and Compliance-matched-ARDS (p < 0.001) but unrelated in COVID-19-ARDS (p = 0.75), suggesting that hypoxemia was not only due to the extent of non-aerated tissue. Increasing PEEP from 5 to 15 cmH2O improved oxygenation in all groups. However, while lung mechanics and dead space improved in PaO2/FiO2-matched-ARDS, suggesting recruitment as primary mechanism, they remained unmodified or worsened in COVID-19-ARDS and Compliance-matched-ARDS, suggesting lower recruitment potential and/or blood flow redistribution. CONCLUSIONS: COVID-19-ARDS is a subset of ARDS characterized overall by higher compliance and lung gas volume for a given PaO2/FiO2, at least when considered within the timeframe of our study.


Subject(s)
COVID-19/physiopathology , Respiratory Distress Syndrome/physiopathology , Adult , Aged , Blood Gas Analysis/methods , COVID-19/therapy , Cohort Studies , Female , Humans , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Italy , Length of Stay/statistics & numerical data , Lung Compliance/physiology , Male , Middle Aged , Prospective Studies , Pulmonary Gas Exchange/physiology , Respiratory Distress Syndrome/therapy , Simplified Acute Physiology Score , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL